Green tea, red wine could help treat genetic diseases

JERUSALEM: Compounds in green tea and in red wine may help block the formation of toxic molecules that cause severe developmental and mental disorders, and may help treat certain inborn congenital metabolic diseases, a study has found.
Most people with inherited metabolic disorders are born with a defective gene that results in a critical enzyme deficiency.
In the absence of a cure, many patients with inborn congenital metabolic disorders must adhere to a strict and demanding diet their entire lives.
The study, published in the journal Communications Chemistry, found that certain compounds found naturally in green tea and red wine may block the formation of toxic metabolites.
The researchers led by Ehud Gazit from Tel Aviv University (TAU) in Israel, considered two compounds: epigallocatechin gallate (EGCG) and tannic acid.
EGCG is found naturally in green tea, which has attracted attention within the medical community for its potential health benefits.
Tannic acid, found in red wine, is known to prevent the formation of toxic amyloid structures that cause neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease.
“In the case of inborn congenital metabolic diseases, the body does not produce a vital metabolic enzyme,” said Shira Shaham-Niv, doctoral student at TAU.
“As a result, metabolites – substances that are, among other things, the building blocks of DNA and proteins – accumulate in the body. Such uncontrolled accumulation is toxic and can cause severe developmental and mental disorders,” said Shaham-Niv.
“Our new study demonstrates once again the ability of nature to produce the best candidate of drugs to treat some of the worst human maladies,” he said.
Collectively, this group of disorders constitutes a significant portion of pediatric genetic diseases. The disease phenylketonuria (PKU), which produces the aggregation of the metabolite phenylalanine, is one common inborn metabolic disease.
Infants with PKU must adhere to a strict diet free of phenylalanine for the rest of their lives. If they don’t, they may face severe debilitating developmental problems.
“But this is an incredibly difficult task, since phenylalanine is found in most of the food products that we consume,” Shaham-Niv said.
“The avoidance of certain substances is the only way to prevent the debilitating long-term effects of inborn congenital metabolic disorders. We hope that our new approach will facilitate the development of new drugs to treat these disorders,” he said.
The research focused on EGCG and tannic acid using test tubes and culture cell systems. The two substances were tested on three metabolites related to three innate metabolic diseases: adenine, cumulative tyrosine and phenylalanine.
The results were promising. Both tannic acid and EGCG were effective in blocking the formation of toxic amyloid structures. The researchers also used computer simulations to verify the mechanism driving the compounds.
“We are entering a new era of understanding the role and the importance of metabolites in various diseases, including metabolic diseases, neurodegenerative diseases and even cancer,” Shaham-Niv said.
“The tools we have developed are ground-breaking and have tremendous potential to help a wide range of patients in the future,” he said. (AGENCIES)